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NUMERICAL MODEL OF CIRCULATION IN CHESAPEAKE BAY 
AND THE CONTINENTAL SHELF 

Kurt w. Hess 

Marine Environmental Assessment Division 
Assessment and Information Services Center 
National Environmental Satellite, Data, and 

Information Service, Washington, DC 20235 

ABSTRACT. A three-dimensional numerical model 
of coastal and estuarine circulation has been 
updated to include water temperature as a prog
nostic variable and to incorporate variable-width 
channels. The model has been applied to the 
Chesapeake Bay and local continental shelf, 
and calibrated with the mean tides and currents. 
Verification included comparison with predicted 
tides at Hampton Roads, VA, and currents at the 
mouth of the Bay. In applications, the natural 
period of the Bay was found to be 1.70 days, 
which is close to estimates based on data, and 
flow at the mouth was found to adjust to increased 
flow from the Susquehanna River within one to three 
tidal cycles. Future plans are also discussed. 

1. INTRODUCTION 

The Marine Environmental Assessment Division (MEAD) has 
continued development and testing of the general three
dimensional free-surface numerical circulation model MECCA (Model 
for Estuarine and Coastal Circulation Assessment) originally 
described by Hess (1985a). Models such as this have become 
important tools for studying the physical dynamics of estuaries 
and exploring the consequences of various human uses of the 
resource. MECCA uses finite difference approximations to the 
momentum, mass, continuity, and concentration equations to 
simulate three-dimensional water currents and salinities at 10 
levels in a shallow water domain at time scales in the range of a 
few minutes to several months, and space scales in the range of a 
few kilometers to a few hundred kilometers. The first version of 
the model was applied to Chesapeake Bay to simulate tidal and 
density-driven currents, and to study the reduction in salinity 
in the Bay during the high river discharge conditions following 
the passage of hurricane Agnes over the watershed in 1972. A 
user's guide for that version is now available (Hess, 1985b). 
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MECCA was subsequently applied to a larger domain which 
includes Chesapeake Bay and a portion of the local continental 
shelf. Circulation in the Bay-shelf region is important for 
assessing the biological productivity of the estuary. Results of 
a detailed study which used wind forecasts and satellite-derived 
temperatures to provide input to the circulation model, which 
then generated currents to simulate trajectories of hypothetical 
biological drifters was presented in Johnson et al. (l986a). The 
experience in applying and testing MECCA in that study was 
directly responsible for several refinements in the modeling 
procedure. The improved version of MECCA is the subject of this 
memorandum. 

The new version of the model incorporates two substantial 
advancements: the mass and momentum equations now allow for 
variable-width channels, and the set of prognostic variables now 
includes temperature. Channels of variable width allow rivers, 
which generally have widths much narrower than a typical grid 
cell width, to be explicitly included in the numerical grid 
scheme. This improvement is significant in the Chesapeake Bay 
region since the estuary has numerous tributaries. Temperature 
is an important variable in the estuarine environment, both for 
the computation of water density, and for proposed future water 
quality and biological applications. Also, among many other 
changes, the derivation of the vertically-averaged velocity 
components was refined. Previously (Hess, l985a), the horizontal 
velocity equation was first vertically averaged, then converted 
to the dimensionless coordinate system; here, the velocity 
equation is converted to the dimensionless coordinate system 
first, then vertically integrated. The new derivation is 
preferable because several of the terms resulting from the 
integration are greatly simplified. 

2. THE MODEL EQUATIONS 

The heart of any modeling system is the set of equations, along 
with an explanation of the types of phenomena the equations are 
designed to simulate. The model equations describing coastal 
circulation employed here are nearly the same as those listed in 
Hess (l985a), with the main exception that the thermodynamic 
energy equation has been included to predict temperature changes. 
Our ultimate goal is to simulate short-term (sub-tidal period) 
changes in the state of an estuary, including daily heating 
cycles and mixing due to sudden (storm related) wind events, and 
to compare modeled results with observational data for the same 
time period. Secondarily, we wish to run a simulation model for 
intervals as long as a season to study changes which become 
evident only at that time scale. While the philosophy of keeping 
a modeling system simple is commendable, the behavior of a 
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coastal estuary is, in reality, quite complex, and so the 
modeling system must also be complex if it is to adequately 
represent that estuary. We also note that it is much simpler to 
reduce a three-dimensional model to a two-dimensional one than to 
accomplish the reverse. 

The major feature of this modeling approach is the use of 
split-mode velocity equations (Madela and Piacsek, 1977; Sheng, 
1983; Blumberg and Mellor, 1983). The external, or barotropic, 
velocity mode (which is simply the vertically-averaged velocity) 
is subtracted from the total velocity to get the internal, or 
baroclinic, velocity mode. Because the internal mode stability 
requirement in the numerical solution scheme is less stringent 
than that for the external mode, the internal mode can be updated 
less often, resulting in significant savings in computer time. 
In practice, the internal mode timestep we used was about four 
times the external mode timestep. 

Another feature of the model equations is the use of a 
dimensionless vertical coordinate, also known as a sigma 
coordinate (Phillips, 1957). This terrain-following coordinate 
gives a better representation of the bathymetry and avoids the 
problem in a fixed-grid system of having the surface elevation 
fall below the next-to-surface level. A disadvantage is that all 
terms in the model equations involving derivatives become 
somewhat more complex. 

The set of model equations is derived in the following manner 
(a summary of the equations at each step of the development 
appears in Appendix A). The equations for flow within a 
continuum (set A) are first integrated widthwise to get the 
variable width form (set B). Then the equations are transformed 
with a new vertical coordinate (set C). Next the velocity and 
continuity equations are integrated over the vertical to get a 
set of external mode equations (set D). Lastly, the vertically
integrated equations are subtracted.from set c velocity equations 
to get the internal mode velocity equations (set D). 

2.1 The External Mode Momentum and Mass Equations 

The momentum equations apply to flow in the northern hemisphere 
in a right-handed Cartesian coordinate system with the z axis 
directed upward and the x axis in the horizontal tangent plane 
with arbitrary orientation. Metric units are used throughout 
unless specifically noted. In the following list of equations, 
mathematical notation is used for partial differentiation of the 
dependent variable with respect to the independent variable, so 
that, for example, 

f x = of/ox 
I 

and (2.1) 
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For the external mode, the horizontal momentum equations used in 
the model (Appendix A) are 

(HY),t + Bx-1 (HBx9uuYYl,x + (H9uvuv),y = -gHh,x- a 0 HPa,x 

- G*x + fy + Bx-1 (2AhHBxY,xl,x + (AhH[Y,x + Y,yll,y 

(2.2) 

and 
(HY),t + (H9uvUv),x + By-1 (HBy9vvvv),y = -gHh,y- a 0 HPa,y 

- G*y- fy + By-1 (2AhHByY,yl,y + (AhH[Y,x + Y,yll,x 

+ Tsy- Tby- By-1CwsH9svYjY I 
and the continuity equation is 

h,t + Bx-1 (BxHY),x + By-1 (ByHY),y = 0 

(2.3) 

(2.4) 

where y and y are the vertically-averaged (external mode) 
velocities in the x and y directions, respectively, Bx and By are 
the widths of flow in the x and y directions, respectively, and H 
is the total water depth and consists of the sum of the water 
level above mean sea level, h, and the depth below mean sea 
level, d. The gravitational acceleration is g, a 0 is a reference 
specific volume, Pa is the atmospheric pressure, f the Coriolis 
acceleration, Ah the lateral eddy viscosity coefficient, Av the 
vertical eddy viscosity coefficient, Ts the wind stress per unit 
density at the air-water interface, Tb the stress per unit 
density at the water-bottom interface, and Cws the water-side 
interfacial friction coefficient. The variables G and G* 
incorporate horizontal density gradients, and the e terms include 
effects of the deviation of the horizontal velocity from the 
vertical mean; these terms are defined in the next section in 
eqs. 2.10-2.13. 

In the presence of a channel, the diffusion terms involving the 
cross derivatives (the sixth terms on the right sides of 2.2 and 
2.3) are dropped; with no channel, Bx = B = 1 and Cws = 0. 
Note that these equations are similar to those in Oey et al. 
(1985), but ours contain the effects of both the horizontal 
density gradient and the internal mode velocities. 

2.2 The Internal Mode Momentum and Mass Equations 

· The internal mode velocities are defined as the departures from 
the vertical mean velocity, i.e. 

u' = u - y and v' = v - y (2.5) 
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For the internal mode, the momentum equations are 

and 

(Hu'),t + Bx-1 (BxH[uu- 9uuuu]),x + (H[uv- 9uvuv]),y 

+ (Wu'),q = G*x- Gx + fv' + Bx-1 (2AhHBxu' ,xl,x 

+ (AhH[v',x + u',yJl,y + H-1 (Avu' ,ql,q- Tsx + Tbx 

- CwsHBx-1 Culul- 9suYIYil 

(Hv'),t + (H[uv- 9uvUV]),x + By-1(ByH[vv- 9vvvvJ),y 

+ (Wv'),q = G*y- Gy- fu' + (AhH[v' ,x + u• ,yJ),x 

+ By-1(2AhHByv' ,yl,y + H-1 (Avv',q),q- Tsy + Tby 

- CwsHBy-1 (vlvl- 9sv~IYI> 

The internal-mode continuity equation is 

( 2. 6) 

(2.7) 

( 2. 8) 

The dimensionless vertical coordinate, q, is defined in terms 
of z as 

q = (h - Z)/H 

so that 
0 

= r (u·u·ju·u·)dq. J l. J -l.-J 
-1 -

0 

= J(ui/Yi) j[ui/Yi],dq 
-1 

0 

G = g[H}(P 
Xi q 

- P0 )dq] x· + g(hx· + qH x ) (P - P0 ) 
11· '1 ti -

G* x· l. 

( 2. 9) 

( 2. 10) 

(2.11) 

(2.12) 

( 2. 13) 

where p is the water density and Po is a reference density. Also 

w = Hdqjdt (2.14) 

is a representative vertical velocity, approximately equal to the 
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actual vertical velocity (see eq. A.20 for the exact 
relationship). 

2.3 The Hydrostatic, state, Salinity, and Temperature Equations 

The hydrostatic approximation to the vertical momentum equation 
is 

P,q = - pgH {2.15) 

where p is the water pressure. A simplified equation of state 
(Mamaev, 1964) is 

where sis the salinity (parts per thousand), and Tis the water 
temperature (°C), and Cs and CT are density coefficients. The 
equation of conservation of salinity is 

(HS),t + Bx-1 (BxH[uS- ~S,xJl,x + By-1{ByH[vS- DhS,y]),y 

+ <ws- H-1ovs,ql,q = o (2.17) 

where Dh is the horizontal turbulent diffusivity and Dy is the 
vertical turbulent diffusivity. The thermodynamic conservation 
of heat equation is 

(HT),t + Bx-1(BxH[uT- ~T,xJl,x + By-1 (ByH[vT- DhT,y]l,y 

+ (WT - H-1DyT,q) ,q = HR {2.18) 

where R is the internal heating term due to solar shortwave 
radiation (see Appendix B). We now have the set of equations for 
the dependent variables. 

2.4 Parameterization 

In order to scale the equations in a meaningful way (i.e. to a 
specific location in a real estuary), we must have realistic 
values for depth, geometry, and boundary inputs. Furthermore, 
stresses and turbulent parameters must also be evaluated. The 
wind stress formulation and the beta plane approximation are the 
same as in Hess (1985a). The bottom stress per unit density in 
the x direction is 

( 2. 19) 

where Cwb is the water-bottom interfacial drag coefficient and ub 
is the total water speed just above the bottom. 
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The vertical turbulent viscosity is approximated here using 
mixing length arguments. The use of higher-order approximations 
based on local turbulent kinetic energy balances does not appear 
to be justified at this time, given the lack of easily
interpretable data on its variability and the extra computer 
resources required to implement such approximations (further 
developments in turbulent theory may alter this judgment, 
however). The instantaneous viscosity is formulated as the 
product of a mixing length, the local vertical velocity shear, 
and a reduction due to water column stability, and is 

Av = [0.40z(1- z/H)]2(u,z2 + v,z2)1f2[Co(1 + c 1Ri)-c2] 

(2.20) 

where Ri is the Richardson number 

(2.21) 

and Am is the molecular kinematic viscosity (10-6 m2/s). Nominal 
values for c 0 , c 1 , and c 2 are 1.0, 5.0, and 1.0, respectively. 
The vertical turbulent mass diffusivity is defined as 

Dv = [0.40z(1- z/H)]2(u,z2 + v,z2)1f2[c3 (1 + c 4Ri)-c5] 

(2.22) 

with nominal values for c 3 , c 4 , and c 5 are 0.005, 5.0, and 1.0, 
respectively. 

Horizontal turbulent exchange coefficients are based on the 
local horizontal velocity shear and a length scale equal to the 
grid cell size (Tag et al., 1979), so that the momentum exchange 
coefficient is 

(2.23) 

where CAH is a coefficient with a nominal value of 0.01~ aL is 
the grid cell size, and A9 is a background value (1.0 m js). 
Also, we assume the equal1ty of the horizontal mass (Dh) and 
momentum (Ah) transfer coefficients 

(2.24) 

At any external mode timestep, the exchange coefficients are 
computed by the above equations and averaged with the value from 
the previous timestep. This introduces a crude time dependency 
to the coefficients, but more importantly avoids wild numerical 
oscillations which may arise from the interaction of the velocity 
and the viscosity. 
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2.5 Thermal Boundary Conditions 

The boundary condition on the temperatures at the air-water 
interface is 

DvT z = Q , (2.25) 

where Q is the sum of several terms which represent heating at 
the sea surface. These terms (Parkinson and Washington, 1979) 
are discussed in Appendix B. Also, because the surface slope is 
so small, the normal to the surface is taken to be parallel with 
the z direction. At the bottom, we have 

(2.26) 

where n is the direction normal to the bottom, Tb is the water 
temperature just above the bottom, Tbed is the temperature of the 
sea bed just below the water-bottom interface, and Cbed is a 
dimensionless bulk heat transfer coefficient with a nominal value 
of 0.003. Here again the assumption of small bottom slopes 
allows us to use the z derivative in place of the n derivative in 
the above equation. 

The internal heating term, R, accounts for the absorption of 
solar shortwave (i.e. visible range) energy in the water column. 
It is assumed that the energy reaching any depth, Qz, is related 
exponentially to the amount reaching the surface, Q0 , by 

(2.27) 

where d 10 is the depth to which only 10 percent of the surface 
energy penetrates. 

3. NUMERICAL SOLUTION OF THE MODEL EQUATIONS 

The method chosen for solution of the equations is the 
application of finite difference techniques. The long history of 
this method has provided a wealth of theoretical and numerical 
information which has made it the method of choice for most 
three-dimensional coastal and ocean models (Parker, 1986; 
Sundermann and Lenz, 1983). Finite element techniques, although 
used occasionally for two-dimensional models (Wang et al., 1984), 
have not enjoyed widespread application in either marine or 
atmospheric modeling; mixed finite difference-finite element 
techniques (Davies, 1986) may be a possible compromise. 
Moreover, finite difference methods lend themselves easily to 
vectorization, and so are ideal for today's supercomputers. 

The finite difference approximation to a particular 
differential equation can be derived in any of several ways 
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(Roache, 1972). Our approach is to.write the Taylor series 
expansion for each derivative at a grid point and select the 
difference which is accurate to the second order. The staggered 
placement of variables is used in horizontal space to allow small 
spatial waves to propagate away from their point of origin. 
Staggered placement in the vertical is used so that the 
horizontal velocity is defined at the surface and bottom. The 
advantage at the top is having a surface velocity for the 
advection of surface-borne pollutants; at the bottom, the 
velocity is required for the interfacial stress terms. The 
equations obtained from the Taylor series expansion are virtually 
identical to those derived from the control volume approach, in 
which the variables represent averages over the grid volume. 

One of the most difficult and fundamental problems in applying 
a finite difference scheme is deciding how to partition what are 
continuous, interactive, simultaneous physical processes in 
nature into several discrete, isolated, sequential numerical 
procedures. We chose the following series of steps. First, the 
water levels and the external-mode horizontal velocities are 
computed by an alternating direction technique. These updates 
are performed at every external-mode timestep, which in the 
present application to Chesapeake Bay and the adjacent shelf is 
360 seconds.· At every third external-mode timestep the 
horizontal turbulent viscosity coefficient is updated. At every 
fourth external-mode timestep (or at each internal-mode timestep) 
the internal-mode horizontal and vertical velocities are updated, 
one horizontal gridmesh cell at a time. Finally, at each 
internal-mode timestep, the salinity and temperature are updated. 
At every third internal-mode timestep the vertical turbulent 
viscosity and diffusivity are updated. 

The foundation of the numerical solution is the calculation of 
the external-mode velocities and the water levels; the 
computation technique is similar to those in classical 
vertically-integrated models (Leendertse, 1967). MECCA employs 
an alternating-direction implicit Abbott method (Sabey, 1970) to 
compute y and an approximation to h on the first sweep, then v 
and h on the second sweep. The application is relatively 
straightforward, but with non-linear advective terms approximated 
with upstream differencing and the bottom stress partitioned into 
internal- and external-mode components (see eq. 2.19). 

The internal-mode velocities, salinities, and temperatures are 
updated less often than the external-mode velocities, thus saving 
computer time. The non-linear advective terms in the internal
mode velocity equation have only a small contribution, so they 
are neglected. The numerical solution of each of these variables 
is based on an implicit calculation over the vertical (to augment 
numerical stability), with top and bottom fluxes providing the 
boundary conditions. In the present configuration there are 10 
levels, equally spaced over the vertical, with one each at the 
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air-water interface and the water-bottom interface. The vertical 
spacing is arbitrary but fixed, and is a result of using the 
dimensionless vertical coordinate. By contrast, in a layered 
system the spacing changes in response to local continuity 
imbalances; severe problems can arise if the layer thickness 
drops to zero. 

The vertical density structure at each grid is checked for 
static stability. Salinity and temperature at all levels in one 
horizontal grid are first computed before moving to the next 
grid. After this update at all levels is completed, the 
stability between each level is checked. If the density at one 
level is lower than the density at the level just above, the 
salinities and temperatures at the two levels are made uniform in 
a way that preserves total mass over the column. 

Another density check is made at the surface layer where there 
is atmospheric heating and cooling. Unrealistic behavior of the 
temperature was found during some simulations in which there was 
wind-induced cooling. Reductions of several degrees Celsius 
occurred during the cooling, followed by rapid increases caused 
by vertical mixing when the density structure became unstable. 
This aberration in the temperature history was eliminated by 
assuming instantaneous vertical mixing between the top two levels 
at all times, a situation which would normally occur anyway in 
the presence of wind waves. 

Besides the usual square land and water grids in the gridmesh, 
we use triangular and riverine grids. Triangular grids (Fig. 
la), in which a diagonal represents the land-water boundary for 
better approximation of the coastline, have water flow through 
two sides and a water level along the diagonal. The grid has, 

y y 

v 

land 

u B h - ~u X 
land land 

X 

(a) (b) 

Figure 1. (a) Placement of variables on a triangular grid cell. 
(b) Placement of variables and definition of width in a 
variable-width riverine cell. 
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therefore, only half the area of a square grid. It is a minor 
drawback that the numerical approximation of horizontal 
derivatives in triangular cells is only accurate to first order. 
Riverine grids (Fig. 1b) have flow in only one direction, a 
variable width, and a surface area smaller than that of a square 
grid. 

4. APPLICATION TO CHESAPEAKE BAY AND THE LOCAL SHELF 

A circulation model is a unique tool for studying many aspects 
of estuarine behavior, and was applied in this study to 
Chesapeake Bay and the local continental shelf as one way of 
assessing the biological productivity of the region. 
Specifically, we have simulated the motion of hypothetical blue 
crab larvae by assuming passive drift with the currents as 
provided by MECCA. The net motion of the larvae over J months 
under the influence of the wind and tidal currents was simulated, 
with the drifters hatching at the mouth of the Bay, rising to the 
surface, and subsequently being advected onto the continental 
shelf (Johnson et al., 1986b). 

4.1. The Gridmesh 

The first step in simulating the currents is the generation of 
a gridmesh to represent the distribution of the depths, currents, 
and other variables over the area of interest. To this end, the 
gridmesh shown in Fig. 2 was created. The area covered includes 
the Chesapeake Bay and the lower portions of four of its major 
tributaries and the local continental shelf out to approximately 
the so-meter isobath and extending up and down the coast about 75 
kilometers on each side of the mouth. Out on the shelf, where 
the depths are relatively great, large grid cells are desirable 
because less resolution is needed there and because the gravity 
wave speed there is relatively large (in an explicit numerical 
solution scheme for the external-mode velocity, the timestep is 
limited by the time it takes a gravity wave to cross the cell; 
although we are using an implicit numerical scheme, we use a 
timestep of the same order). In the Bay, small grid cells are 
desirable for increased resolution of the flow field. The grid 
cell size, 11.2 kilometers, was chosen as a compromise between 
these competing requirements. Furthermore, this size allows two 
cells to represent the Bay mouth. In the future, a mesh with 
variable grid sizes may provide a more suitable approach. 

The number of vertical levels used in this Bay-shelf 
application is 10. The vertical variation in the horizontal 
velocity, the salinity, and the temperature at both the top and 
bottom boundaries is crucial in determining the fluxes across 
these surfaces. In addition, the vertical turbulent exchanges 
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SUSQUEHANNA R. 

POTOMAC R. 

POINT I 

~ 
SOUTHERN 

NORTHERN 
BOUNDARY 

DEEP-WATER 
BOUNDARY 

BOUNDARY 

Figure 2. Gridmesh covering Chesapeake Bay and the local 
continental shelf used in this study. Cell size is 11.2 km 
by 11.2 km. Cells marked with an "X" along the deep-water 
boundary require input water level conditions. Cells marked 
with a "<" along the northern and southern boundaries have 
radiation condition outflows specified; cells with the same 
mark at the heads of rivers require flowrate boundary 
conditions. 
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are a strong function of the vertical gradients in the 
internalflow, so that the resolution provided by so many levels 
is fully justified in view of the complexity of the system. 

4.2. The Boundary Conditions 

Large amounts of data are required to run the model for a 
simulation of daily events over several months of real time. 
Examples of these are tide histories, wind speeds and directions, 
atmospheric temperatures, river flowrates, and riverine and 
oceanic velocities, salinities and temperatures. Additionally, 
there are several types of physical boundaries to consider. 
These are the oceanic, riverine, air~water, and the water-bottom 
boundaries. Each one of the general types of boundaries is 
discussed in turn. 

Oceanic Boundaries 

In the model grid domain we have selected, as in most coastal 
models, there are two types of.oceanic boundaries: the deep water 
boundary and the lateral boundary. For both types it is assumed 
that the actual boundary runs through the center of the cell, so 
that water levels, salinities, and temperatures are required as 
input. Since the water level conditions at each are somewhat 
different, we will discuss the types of boundaries separately. 

At the deep-water boundary, which runs approximately parallel 
to shore, the most important input value for driving the system 
is water level. Tidal water levels for any time are generated in 
MECCA by interpolation from a series of tide height-and-time 
values by 

hb(t) = 0.5( (hi-l -: hi)cos(0.57r[t - ti-lJ/[ti - ti-l]) 

+ (hi-l +hi)} ( 4. l) 

where hb is the height at the boundary, hi is the ith value of 
the tide (above m.s.l.), tis the time, and ti is the ith time of 
occurance (after some reference time) of the tide extremum (high 
or low). The time ti is the time of the extremum closest to, but 
later than, t. The above expression for the water level is also 
well _suited for including water level perturbations due to 
inverse barometer effects and subtidal-frequency waves as this 
information becomes available. 

Also at the deep-water boundary, the external- and internal
mode velocities are computed. as interior values from water levels 
at the boundary because of the staggered grid, and do not need to 
be specified separately. 
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The deep-water boundary temperatures and salinities over depth 
at grid cells are generated from a set of input values composed 
of the depth of the upper mixed layer, the depth of the bottom of 
the pycnocline, and values for salinity and temperature at four 
depths each: for the surface, the bottom of the mixed layer, the 
bottom of the pycnocline, and the bottom of the water column 
(Fig. 3). At any one cell, the index values of the depths, 
salinities and temperatures are found by linear interpolation 
between values at the end cells of the row (Points 2 and 3, Fig. 
2). Finally, the nominal values of salinity and temperature at 
each level are found by interpolation between the closest index 
values. During outflow (flow directed outward from the 
computational region), the boundary values of salinity and 
temperature are generated from the interior field by either 
extrapolation or simple advection. During inflow, boundary 
values at each level are generated by linear interpolation 
between the value that occurred during the last episode of 
outflow, and the nominal value (assumed to occur 6.10 hours 
later). 

In contrast to the deep water boundary, the lateral boundary, 
which runs approximately normal from shore, requires a different 
set of values. Water levels at the lateral boundaries are 
specified using the condition of outward radiation of mechanical 
energy (Sommerfeld, 1949). Since observations (Moody et al., 
1984) suggest that the tide waves propagates landward in a 
direction nearly normal to the shoreline, it is assumed that the 

MIXED 
LAVER 

PVCNOCL 

DEEP 
LAVER 

l 

/T2 INE 

T3 

T z 4 

S,T 

Dl 

s~ D2 
j, 

s 
3 

s4 

Figure 3. Schematic representation of the vertical variation of 
temperature and salinity as specified in the oceanic boundary 
conditions. 
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tidal level at the lateral boundary, hL, will rapidly adjust 
itself toward the value of the tidal level at the nearest deep
water boundary cell, hb. Specifically, this condition (Davies, 
1983) is 

(4.2) 

where U is the outward normal flowrate per unit width. 

Salinities and temperatures at the lateral boundaries are 
specified in exactly the same way as at the deep-water boundary. 

Riverine Boundaries 

The upper ends of rivers are represented by grid cell 
conditions for either water level or velocity, and for salinity 
and temperature. There are two types of boundaries possible: a 
river channel cross section and a waterfall. 

The river channel section boundary is assumed to be located at 
the grid cell side, where either flowrates or velocities are 
specified. Since river flowrate, QR, is commonly given by the 
u.s. Geological Survey, the external-mode velocity is expressed 
as 

y = QRf(HaL) (4.3) 

where H is the local total depth. The internal-mode velocity is 
specified by the analytic function 

U 1 = u0cos(~q) (4.4) 

where u 0 is the value at the surface. Salinities or 
temperatures, C, over depth are specified by the analytic 
expression 

C(q) = Ctop- (Ctop- Cbottom)(1- cos[~q])/2 (4.5) 

The other possible riverine condition assumes that the boundary 
coincides with the center of the grid cell, and simulates the 
presence of a waterfall. The water level is specified as 

(4.6) 

and concentration is found from 

(4.7) 

where Cf is the salinity or temperature of the falls. This 
condition is experimental and was not used in the model runs. 
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Air-water Interface 

Wind speed and direction data is entered as a series of values, 
taken from the National Weather Service's Limited-area Fine-mesh 
Model (LFM). Twice daily wind data from the LFM's lowest layer 
(the boundary layer) from several atmospheric model grid points 
for the region are used as input to a regression equation 
(Johnson et al., 1986a) to generate 10-meter winds at Norfolk VA 
Naval Air station. These time-varying Norfolk winds are then 
used at all grids in the circulation model. 

Twice-daily boundary layer atmospheric temperatures are also 
used in the surface heating equations (Appendix B). Atmospheric 
pressure, relative humidity, and fraction of sky cover are taken 
as constants (Pa = 101400 Pa, Rh = 0.7, n = 0.10). 

water-bottom Interface 

At the bottom of the water column, the sea bed temperature, 
Tbed• represents the temperature of the first few meters of 
material below the water-bottom interface. Not much is known 
about the time variability of this value, so it is assumed 
temporally constant (although it does vary in the horizontal). 

4.3 Model Initialization 

Initial values for the model's variables are set in one of two 
ways, depending on whether an antecedent run exists. In the 
modeling environment, we consider a "run" to consist of a single 
computer job submission simulating a finite interval of time. 
several runs strung together in series constitute a "sequence". 

At the beginning of the first run in the sequence, water levels 
and all velocities are set to zero, and salinities and 
temperatures are set by interpolation from the boundary values. 
The vertical turbulent diffusion coefficient, Av, is set to a 
relatively large value (0.01 m2/s) at all cells to suppress 
oscillations which can develop when a fluid system at rest is 
subjected to sudden forcing. For the same reason, the horizontal 
diffusion coefficients are also set to relatively large values 
(500 m2;s in the Bay and 50 m2;s on the shelf). 

For subsequent runs in the sequence, all the above variables 
are set to their respective values at the end of the previous 
run. 

Some special initialization procedures are used in the first 
run in the sequence for the tides, winds, and concentrations. 
The tidal water levels are not applied at full force during the 
first 24 hours, but are reduced by multiplication by a simple 
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ramp function. The ramp function is zero at t = 0, increases 
linearly to unity at 24 hours, and is unity thereafter. The 
winds are treated in the same way. The concentrations are not 
updated during the first 24 hours, but the exchange coefficients 
are. This allows the vertical and horizontal exchange 
coefficients to incorporate the velocity shears more accurately. 

Since the concentrations, and hence densities, are not updated 
during the first 24 hours of the first run, a serious problem 
could develop in the momentum equations. The horizontal pressure 
gradients in the momentum equations (the G and G* terms) 
incorporate the initial mass distribution, which is after all 
just a guess. These terms could be orders of magnitude too 
large, causing unrealistic horizontal currents; moreover, there 
is no self-adjustment process since the concentrations are not 
being updated. To prevent these problems, the pressure gradient 
terms are multiplied by another ramp function. This function is 
zero for times less than 24 hours, increases linearly to unity at 
36 hours, and is unity thereafter. 

5. SIMULATION OF TIDES AND TIDAL CURRENTS 

The astronomical tides are a major source of energy to 
Chesapeake Bay, and so are the phenomenon we have chosen to study 
first. For the first part of the investigation, we have 
simulated the mean tides in the Bay. Mean tides are determined 
by the National Ocean Service (NOS) from a long series of 
observations. In the model, the mean tide is generated by a 
forcing tide with a constant range and a constant period of 12.40 
hours; this period is close-to that of the M2 tidal constituent 
(12.42060 hours), and in_31 days there are exactly 60 cycles. 

5.1 Preliminary Tests 

The first test of the model of the Bay-shelf system determined 
the time necessary for the tides and currents at selected 
locations in the gridmesh to reach a repeatability condition. 
Repeatability is defined here as occuring when successive high 
(or low) waters are within 0.001 meter, or when successive flood 
(or ebb) currents are within 0.001 mjs. With a timestep of 360 
seconds, repeatability was reached after 5 to 6 tidal cycles 
(Fig. 4). -

The next test was designed to shown how large a timestep is 
allowable to maintain realistic results. As a first 
approximation, the timestep should be about the size of the 
limiting explicit timestep 

1/2 T = t:J.L/ (2gHmaxl 
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Figure 4. Plots of the amplitudes of successive high and low 
waters at Hampton Roads, VA, and Baltimore, MD, showing that 
a repeatability condition is reached after about five tidal 
cycles. 

which for our basin is 289.9 seconds. An implicit solution 
scheme like the one we are using has been shown to be stable 
regardless of the timestep size (Sobey, 1970; Leendertse, 1967) 
for the restrictive case of uniform depth and without advective, 
Coriolis, bottom friction, pressure, and surface forcing terms. 
In a real basin, however, these conditions are not met, so there 
is no guarantee that the numerical scheme will be stable; we thus 
chose a timestep that was close to the limit for an explicit 
scheme (eq. 5.1). Moreover, an implicit numerical solution will 
generally have small wave deformation when the timestep is not 
greater than the limiting explicit timestep. Several test runs 
were completed, and the results show that a timestep of 360 
seconds gives acceptable results; that is, water levels were 
within 0.01 meters and speeds were within 0.01 mjs after five 
tidal cycles for timesteps of 180, 360, and 720 seconds .. 

In another preliminary test performed we compared the numerical 
and analytic solutions for one-dimensional, frictionless, 
linearized flow in a variable-width channel. The tide range 
along the length of the channel with a uniformly-varying width, 
closed at one end and tidally forced at the other is given in 
terms of Bessel functions (see Lamb, 1932, Paragraph 186 for a 
similar example) by 

h = Acos(<Tt) [{ (1 - cY0 (kL2l )jJ0 (kL2l }J0 (kx) + cY0 (kx)] (5.2) 
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where a is the tide's angular frequency, A is the tide amplitude 
at the mouth, L 2 is the distance from the origin to the open end 
of the channel, k = aj(gH)l/2, H is the channel depth, and 

(5.3) 

where L1 is the distance from the origin to the closed end of the 
channel (Fig. 5a). Note that the analytic solution is 
independent of the actual channel width. The difference between 
the modeled and the analytic solutions was less than 2 percent at 
all grid points (Fig. 5b). 

5.2 Model Calibration for Mean Tides 

The first three steps in model development are generation of 
the equations, comparison of modeled to analytic solutions, and 
selection of the timestep. The next two steps are calibration 
and verification. Calibration involves selecting a set of test 
data and then matching model output to that.data by judiciously 
adjusting model input parameters. This adjustment is permissible 
because (a) the finite-difference equations and grid are only an 
approximation to the actual system, and (b) many of the 
processes, especially the turbulent exchanges, are poorly 
understood and are thus represented by simple relationships with 
adjustable coefficients. Verification involves comparing model 
output with data for a different time period or another case, but 
using the model parameters obtained during the calibration step. 

The calibration data selected for the Bay-shelf. region were the 
mean tidal water levels and currents as tabulated by the National 
Ocean Service (NOS, 1985a,b). These mean values are averages 
over a long series of observations and are available for selected 
points around the Bay. For verification data, we selected NOS 
predicted water levels and currents for a specific period of time 
in June-July, 1980. 

During the calibration process, we tested the influence of 
(primarily) the following on water levels and current speeds: 
grid cell depths and widths, oceanic boundary tidal range, bottom 
friction (Cwbl, and horizontal friction (CAHl· For this 
calibration, the water was assumed to have zero salinity and a 
temperature of o0 c, so that both the horizontal and the vertical 
density gradients were zero. The side interfacial friction 
coefficient, Cws• was set to zero. The vertical turbulent 
v.:j.scosity parameter, c0 (see eq. 2.20), also contributes to the 
bottom friction through the bottom boundary condition on the 
velocity; this parameter's value was kept at 1.0, with the 
recognition that for model simulations with varying density 
(hence non-zero Richardson number) the value of c9 may need 
refining. Values resulting from the calibration 1nclude 
Cwb = 0.003 and CAH = 0.01. 
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Figure 5. (a) Schematic of the variable-width channel, and (b) 
a comparison of the numerical and analytic solution for the 
tide range along the channel. The amplitude is the 
ratio of the tide range at the mouth to the range at any 
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Based on these tests and on the known behavior of analytic 
solutions of tides in simple basins, we can generalize our 
observations made during the model calibration step as follows. 
Increasing the oceanic tide range increases the interior tides 
and currents proportionately. Increasing water depths between 
locations causes the tide wave to propagate more rapidly, and so 
decreases the time lag between phases at these locations. 
Increasing the bottom friction causes greater loss of energy, and 
so reduces the currents and tides, with greater reduction in the 
Bay further from the mouth; bottom friction has a small effect on 
the phase. on the open shelf, the horizontal friction was much 
more efficient in damping tides than the bottom friction. If a 
river's length is extended, the tide range at the river mouth is 
reduced. If a river's width is decreased at a point, the tide 
range is lowered upstream of that point and raised downstream. 
Parenthetically, we should add that the location of the major 
tide gauging station in the lower Bay, at Hampton Roads, VA, is 
inside the mouth of a river with a restricted entrance, and is 
therefore a poor location for representing the tides in the 
adjacent estuary and shelf. 

The tide ranges and phases at several Bay locations resulting 
from the calibration procedure are shown in Fig. 6a,b. Modeled 
mean tide ranges are within 0.10 m for most stations, and modeled 
mean high water occurs within 0.5 hours for most stations. Using 
NOS tide tables for several days of data, we determined that for 
comparison purposes the tide phase at sandy Hook, NJ, was 
approximately 1.44 hours ahead of that at Hampton Roads, VA, and 
the phase at Baltimore Harbor, MD, was 10.10 hours behind. 

The calibrated results for flood and ebb currents are shown in 
Fig. 6c. Most current speeds were within 0.05 mjs of the 
observed mean values. Without calculating the flood and ebb 
directions, we know from previous work in similar models that 
they are within 10° or 20° of the observed. For comparison 
purposes we estimated that the flood at Baltimore Harbor (off 
Sandy Point, MD) was 8.84 hours after flood at the mouth of the 
Chesapeake, and the ebb was 8.64 hours later. 

Some data for deep-water currents on the shelf are given in 
Moody et al. (1984). current measurements at three depths at a 
location known as station MAB, 80 kilometers due east of the Bay 
mouth in 28 meters of water show that the major axis of the 
current ellipse is oriented approximately toward the Bay 
entrance. This orientation is evidence that the tide wave 
propagates inward normal to the coastline; a wave propagating 
along the coast (a Kelvin wave) will have its current ellipse 
oriented parallel to the coast. A comparison of the currents 
(Fig. 7) shows that at all depths the MECCA currents have a 
strength of 0.20 mjs along the major axis; and 0.10 mjs along the 
minor axis; the orientation is constant. By contrast, the 
observed currents change in orientation and strength from one 
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depth to another, and are strongest (0.20 mjs) at mid-depth. The 
near-surface and near-bottom currents are weaker (0.15 mjs), and 
the major axis is rotated clockwise with depth. This change of 
orientation is due to friction and the earth's rotation; possibly 
MECCA's turbulent parameterization is not sufficient for the open 
shelf area. Tidal currents on the shelf are relatively weak, 
however, so the differences are unimportant for our purposes. 

5.3 Relationship Between Oceanic and Interior Tides 

The last detail to be addressed for the calibration is the 
relationship of the tide at the oceanic boundary and the tide 
inside the Bay. A table of values was generated by running MECCA 
with several values of tide range, and examining the tide at 
Hampton Roads, Va. A graph of high and low waters is shown in 
Fig. 8. When the data for high and low waters is combined, an 
approximate relationship for the ranges is found to be 

RHR = 0.9R0
2f 3 (5.4) 

where RHR is the range at Hampton Roads 
range at the oceanic boundary (meters). 
limited oceanic ranges not greater than 
high water at Hampton Roads was roughly 
water at the oceanic boundary. 
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5.4 Model verification for Tides and Tidal Currents 

The calibrated model was verified by comparing the water levels 
and currents from the circulation model with those in the NOS 
tables for the period 6 - 10 July, 1980. Winds were set to zero, 
river flowrates were set to their historical means (Table 1), and 
a 10-day spinup (June 26 - July 5) was used. Another possible 
comparison would be between modeled tides and water levels 
obtained by direct observation; this comparison was not made 
because observed tides cohtain not only the astonomical tide but 
also wind and atmospheric pressure-induced tides and other shelf 
influences. The chosen method of comparison isolates the 
astronomical tide as the single factor in water level changes. 

The boundary conditions for the period of interest were 
generated in several steps. First, the tide times and heights 
for the period 26 June - 10 July, 1980, were taken from the table 
for Hampton Roads, and the mean water level over that time was 
computed by simple averaging. The mean level was then subtracted 
from the individual heights to get a series of normalized highs 
and lows. A third series of highs and lows for the oceanic 
boundary was then created by calculating the deep-water high or 
low value corresponding to the normalized value by interpolation 
with the data plotted in Fig. 8; the time of the oceanic high or 
low was set as 2.2 hours earlier than the tabulated value. 

Figure 9 shows a comparison of the modeled and normalized water 
levels and currents for Hampton Roads, VA. Water levels (Fig. 
9a) for any time between the times of the normalized values were 
generated by an interpolation function analogous to eq. 4.1. The 
most obvious conclusion we can make by looking at the curves is 
that the phases of the tides are very close, with MECCA water 
levels being slightly ahead (by about 0.5 meters) for the higher 
of the two daily highs, but quite accurate for the lower high. 

Table 1. Historical mean flowrates used in the riverflow 
experiment. The York (Mattaponi and Pamunkey) River is 
not modeled in the gridmesh. Data are from U.S. 
Geological Survey and include the 1985 water year. 

River 

Susquehanna 
Potomac 
Rappahannock 
York 
James 

Long-term 
(m3/s) 

1212 
327 
47 
45 
2U 

Mean Mean Used in MECCA 
(m3js) 

1210 
320 
50 

210 
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Figure 9. Comparison of model output (dashed lines) and National 
Ocean Service predictions (solid lines), interpolated from 
tabulated values, for 6-10 July, 1980, for (a) tides at Hampton 
Roads, VA, and (b) currents at the entrance to Chesapeake Bay. 
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Modeled and NOS currents for the mouth of Chesapeake Bay for 
6 - 10 July, 1980, are shown in Fig. 9b. NOS values are 
generated by an interpolation function analogous to eq. 4.1, but 
using current speeds for the NOS station at the Chesapeake Bay 
Mouth. Since the NOS currents are based on measurements from a 
near-surface current meter, the MECCA current used in the 
comparison is the one at the surface. The phase of the modeled 
currents is close to, but slightly behind, that of the table. 
Throughout most of the 5-day simulation, the MECCA ebb (positive) 
currents are smaller than the NOS ebbs by about 0.15 mjs, while 
the flood (negative) currents are about 0.20 mjs larger. 

Modeled and NOS tides at Baltimore are shown in Fig. lOa. Here 
the difference between the two is more pronounced, with the 
modeled low waters generally 0.10 to 0.20 meters above the NOS 
low waters, and the modeled high waters sometimes higher, 
sometimes lower than the NOS levels. Since the diurnal 
inequality (the fact that one high water is significantly higher 
than the other) is more pronounced at Baltimore than at Hampton 
Roads, it seems that some tidal components are amplified as they 
travel up the Bay more than other components. The fact that the 
model does not reproduce this phenomenon may be due to the use of 
the series of high and low waters and the interpolation function 
to supply boundary tides, rather than the use of the sum of a 
series of tidal constituents (see Section 7.2). 

Modeled and NOS currents at Sandy Point, MD, are shown in Fig. 
lOb. As with the water level variation at Baltimore, the modeled 
currents here do not accurately capture the diurnal inequality 
displayed in the NOS prediction. The flood and ebb during the 
lesser of the two tidal cycles is adequately reproduced (to 
within 0.10 mjs), but the magnitudes of the modeled currents are 
smaller than the corresponding predicted currents during the 
stronger of the two cycles by 0.10 to 0.30 mjs. 

These results show that MECCA reproduces the NOS predicted 
tides and currents in the lower Bay with an acceptable level of 
accuracy, but that further work is necessary to have sufficiently 
accurate tides and currents in the upper Bay. 

6. MODEL APPLICATIONS 

Now that we have a model which has been verified for tidal 
water levels and currents (at least in the lower Bay), we can use 
it to test hypotheses or to answer questions about physical 
processes occurring in the Bay. A few of many possible 
applications are now discussed; conclusions should be regarded as 
tentative until verification is complete. 
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6.1 Natural Period of Chesapeake Bay 

A numerical experiment was performed to determine the natural 
period of Chesapeake Bay. The natural period is important for 
intrepreting the Bay's response to environmental forcing at all 
frequencies. The experiment involved initializing the Bay at 
rest with a water elevation above mean sea level that was zero on 
the shelf and at the Bay mouth, and increased linearly to 1.0 
meter below m.s.l. at the head of the Bay. The subsequent time 
history of the water levels and currents was then modeled. The 
water level histories at several stations in the upper Bay are 
shown in Fig. 11. The natural period at these stations was 
determined by the time interval between successive crossings of 
the zero-elevation axis.. The mean period was found to be 1. 70 
days. 

There is an analogue to this hypothetical situation in nature, 
and it occurs after the passage of a hurricane. Upon the 
approach of a cyclonic storm from the southeast, winds from the 
north drive water from the Bay, causing low waters in the upper 
portions of the Bay. After the storm passes and the winds have 
diminished, the water level will rebound toward its natural 
configuration. Records of water levels at the Baltimore tide 
gage during hurricanes (Harris, 1963: Neumann and Pierson, 1966) 
show a time history much like that produced by the model (Fig. 
12). Wang (1979) has also estimated the natural period of the 
Bay from the time required for the tide to propagate up the Bay. 
The results are shown in Table 2, and are fairly consistent, 
ranging from 1.14 days for the 1936 storm to Wang's estimate of 
2.07 days. 
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Figure 11. Water level history at several model grid cells near 
Baltimore, MD, from the free oscillation test. 
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Figure 12. storm tracks and water level histories at several 
East Coast stations including Baltimore, MD, during the passage 
of the hurricanes of 1936 and 1944 (figure from Neumann and 
Pierson [1966] used by permission of copyright owner). 
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Table 2. Estimates of the natural period of 
Chesapeake Bay. 

Source 

Model 
Hurricane of 1936 
Hurricane of 1944 
Wang (1979) 

Period (days) 

1. 70 
1.96 
1.14 
2.07 

6.2 Effect of Suddenly Increased Riverflow 

Another simple application of MECCA involves studying the rate 
of propagation of a flood wave down the Bay. In this test, the 
flowrates of the major rivers were set to their historical means 
(Table 1). After allowing the modeled variables to come to a 
repeatability condition with tidal and river input, we doubled 
the Susquehanna River flowrate over the course of one day. 
Figure 13 shows the Susquehanna flowrate and the net Susquehanna 
flowrate at the mouth during the next several days. The net 
f1owrate at the mouth was defined as the mean over a tidal cycle, 
and the net Susquehanna flowrate is the mean minus the sum of the 
flowrates of the other rivers. 

The results show that the increase in the hydrograph, the 
flood, was felt at the Bay mouth one to three tidal cycles later, 
showing that the increased flow propagates downbay at the gravity 
wave speed. Naturally, constituents of the water such as 
sediments move much more slowly, at a speed approximately equal 
to the flowrate divided by the cross-sectional area. 

6.3 Larval Drift 

An obvious use of a numerical circulation model is the 
simulation of transport of Lagrangian drifters under the action 
of the currents to assess the fate of water-borne species such as 
pollutants or fish larvae. Lagrangian particles are assumed to 
move at the same velocity as the MECCA currents, and their 
positions are updated by numerical time-integration of these 
currents. Drift experiments and studies of the motion of blue 
crab larvae during the fall of 1980 were described by 
Johnson et al., (1986b). 
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Figure 13. Flowrate at the mouth of Chesapeake Bay and flowrate 
in the Susquehanna River showing the time an increase in flow 
in the upper Bay can be observed at the mouth. 

6.4 Temperature Spinup Experiment 

A number of comparisons of modeled and observed surface water 
temperatures were described in Johnson et al. (1986a). 
Specifically, temperatures for the period 9 - 23 April, 1982 were 
simulated and analyzed. Differences between the modeled output 
and the data were thought to be caused by the use of an 
unrepresentative value for dlQ (6 meters was used, whereas a 
value from 0.3 to 3.0 meters 1s probably more realistic) , the 
use of 12-hourly LFM atmospheric temperatures rather than hourly 
observed temperatures, or the use of an insufficiently long 
spinup time. Experiments were then performed on the 
initialization and spinup of the temperatures. 

The spinup experiment began with the Bay at an initialized 
temperature, and with mean tides and currents at a repeatability 
condition. A daily heating cycle, representative of April, was 
used each day, and the winds applied were of constant strength 
(7.0 mjs) but varied in direction uniformly over a 2-day period. 
Air temperatures varied from 20°C in the day to 10°C at night. 
Water temperatures at two locations in the region, at four depths 
(0, 33, 66, and 100 percent of the depth), for a period of 120 
days are shown in Fig. 14. 
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Figure 14. Water temperatures at four depths for two location in 
the Bayjshelf region: (a) mid-Bay, and (b) mid-shelf. The mid 
-Bay station has a depth of 8 meters, and the mid-shelf station 
has·a depth of 38 meters. 

33 



' 

The plots show that the surface temperature comes to a 
condition close to repeatability relatively quickly, within 5 to 
10 days. This is undoubtedly due to the wind mixing there, and 
the absorption of atmospheric heating by the full depth of the 
upper layer. The temperature changes after that time are small; 
in the Bay, the temperature range over the two-day (wind
related) cycle is about 1.5°C, and at the mid-shelf location it 
is 1.0°C. In addition, the bottom temperature changes very 
little over the 4-month period, because it rapidly comes to 
equilibrium with the sea bed temperature (cf. eq. 2.26). 

The temperatures below the surface and above the bottom, within 
the core of the flow, show a rapid change over the first 50 days, 
and a slower rate of change thereafter. A notable exception is 
the near-surface temperatures at the mid-Bay station; at 90 days, 
there is a large (2°C) drop over a few days. This change appears 
to be an overturning event, as the below-surface warms up to a 
point when it becomes less dense than the waters above and below 
it. Apparently, the conditions chosen for the experiment, if 
sustained long enough, would lead to temperatures nearly uniform 
in the upper half of the water column. 

7. SUMMARY AND FUTURE PLANS 

A three-dimensional numerical model has been developed and 
applied to an estuarine-shelf hydrodynamical system. The model 
was designed to simulate tidal, density-driven, river discharge, 
and wind-driven currents. The model's tidal currents have been 
calibrated with NOS observed mean tidal currents, and the process 
of verifying the currents is well along. Much work remains, 
however, before estimates of confidence can be placed on the 
computed salinities and temperatures. 

Experience with model testing and application has pointed to 
several topics which ought to be developed further. These 
include the use of variable grid sizes, the use of tidal series 
for boundary condition water levels, vectorization of the 
computer code, and extension of the model to other basins. These 
topics are described in greater detail below. 

7.1 Grid Stretching 

Variable grid sizes can be obtained by stretching the grid in 
one or more directions with a piecewise coordinate transformation 
such as (Schmalz, 1985) 

x = a + brc (7. 1) 

where x is the coordinate in real space, and r is the coordinate 
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in the uniform (model) domain. Using the transformation (7.1), 
we get 

f,x = [cbxc-1]-lf,r (7.2) 

The general strategy is to substitute the expression (7.2) for 
the x-derivative wherever it appears in the model equations (the 
y and q coordinates can be treated similarly). Grid stretching 
by coordinate transformation is preferable to the use of 
unequally spaced points because the latter will reduce some 
second-order finite-difference approximations to first-order 
(Roach, 1972). 

Further refinements of this general technique include the use 
of sheared coordinates (Jelesnianski, 1976), or boundary-fitted 
coordinates (Spaulding, 1984). These coordinate systems 
incorporate coastline geometry more accurately, and so can give 
more accurate results. 

7.2 Use of Tidal Series for Boundary Conditions 

At any location, the tidal water level variation can be 
expressed as 

(7. 3) 

where h 0 is a reference level, fn is the lunar node function for 
tidal constituent n, A the constituent amplitude, w the 
frequency, V0 + u the equilibrium argument, and k the epoch. 
This approach was used successfully by Hess (1976) and Hess and 
White (1974) for Narragansett Bay, RI, and can be useful here to 
provide more accurate tidal boundary conditions. 

7.3 Vectorization of the Code 

Investigations are presently underway to determine what steps 
are necessary to run the model on NOAA's Cyber 205 at the 
National Meteorological Center. Extensive rewriting of the 
computer code is anticipated to conform to the machine's 
compiler, but the result should be a version which runs much 
faster than the VAX-based code presently used. 

7.4 Running MECCA for Other Areas 

Preliminary discussions about using the model for other 
estuaries or coastal areas are under way. Two geographic regions 
are being considered. The PamlicojAlbemarle Sound in North 
Carolina could be included as a possible extension of the 
Chesapeake Bay/shelf model gridmesh; this area is important as a 
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blue crab fishery and may interact with Chesapeake Bay, although 
the nearness of the Gulf Stream could pose difficult problems. 
The San Francisco Bay and adjacent shelf is another area of 
interest; coastal currents may be modeled to study the motion and 
fate of marine species such as dungeness crab. 
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APPENDIX A. Derivation of the Set of Model Equations 

1. The Basic Equation in a Continuum (set A) 

The basic equations in a Boussinesq fluid continuum (Phillips, 
1980) are the horizontal momentum equations with Reynolds 
stresses on a rotating Cartesian right-handed frame of reference 

and 

u,t + (uu),x + (uv),y + (uw),z =- a 0 P,x + fv 

+ (2Ahu,xl,x + (Ah[v,x + u,yJl,y + (Avu,z),z 

v,t + (vu),x + (vv),y + (vw),z =- a 0 P,y- fu 

+ (Ah[u,y + v,xJl,x + (2Ahv,yl,y + (Avv,z),z 

(A.l) 

(A. 2) 

where u, v, and w are the components on fluid velocity in the x, 
y, and z direction, respectively. The fluid pressure is p, a0 is 
a reference specific volume, f the Coriolis acceleration, Ah the 
horizontal diffusivity, and Av the vertical diffusivity. The 
hydrostatic approximation to the vertical momentum equation is 

P,z = - pg (A.3) 

where p is the water density and g the gravitational 
acceleration. An approximation to the continuity, or mass 
conservation, equation which neglects sound waves is 

u,x + v,y + w,z = o 

An equation of state for sea water is 

(A. 4) 

where p0 is a reference density, S the salinity (parts per 
thousand), and T the temperature (°C). Conservation of dissolved 
salt is 

S t + (uS) x + (vS) y + (wS) z - (DhS xl x - (DhS y) y 
f I I I II II 

- (DvS,z) ,z = o (A. 6) 

where Dh and Dy are the horizontal and vertical diffusivities. 
The heat conservation equation is 

T,t + (uT),x + (vT),y + (wT),z- (~T,xl,x- (DhT,yl,y 

- (DyT,z),z = R 

40 

(A. 7) 



where R is an internal heating term. Nominal values for the 
parameters are g = 9.81 m2js, QO = 1.0 1/kg, Cg = 0.0008 ppt-1, 
cT = -0.00001 °c-1, f = 2Qsin(latitude), andn= 0.0000729 s-1. 
The eddy coefficients Ah, Av, Dh, and Dy vary .over space and in 
time. 

2. Laterally-averaged Equations (set B) 

The set of equations is now averaged laterally (over the 
direction normal to the flow in the horizontal plane). The 
limits of integration define the width of the flow, and 
specifically the width of an imbedded river. We define Bx and By 
as the width of flow in the x- and y-directions, respectively. 
Following Blumberg (1975, 1978) and Wang and Kravitz (1980), and 
assuming that B doesn't vary with z or t, we get 

and 

u,t + Bx-1(Bxuu),x 

+ Bx-1 (2BxAhu xl x 
I I 

+ (uv) y + (uw) z = 
I I 

+ (Ah[v,x + u,yll,y 

- aop x + fv , 

v,t + (vu),x + By-1 (Byvv),y + (vw),z =- a 0 P,y- fu 

+ (Ah[u,y + v,xll,x + By-1 (2ByAhv,y),y 

+ (Avv,z),z- CwsBy-1vlvl 

Continuity is given by 

Bx-1 (Bxul,x +By-1 (Byvl,y + w,z = 0 

(A.8) 

(A.9) 

(A.10) 

If a channel is present, the cross-flow derivatives in the 
diffusion terms (the third term on the right side of A.8, the 
fourth in A.9) are set to zero; if a channel is not present, 
Bx = By= 1.0 and Cws = o. 

Conservation of salinity is expressed as 

S,t + Bx-1 (BxuS- BxDhS,xJ,x + By-1 (ByvS - ByDhS,y),y 

+ (wS - DyS,z),z = o (A.11) 

The conservation of heat is given by 

T t + 
I 

Bx-1 (BxuT- Bx~T,xl,x -1( + By ByVT - ByDhT,y),y 

+ (wT - DvT z) z = R (A.12) 
I I 
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The hydrostatic approximation to the vertical momentum equation 
and the equation of state are unchanged. 

3. The Equations in the Dimensionless Vertical Variable (set C) 

The equations are now transformed into a new coordinate system, 
with the vertical coordinate 

q = (h - Z)/(h + d) = (h - Z)/H (A. 13) 

where h is the water surface elevation above mean sea level, d 
the mean sea level depth, and H the total local depth. The 
transformation is accomplished by substituting an expression in 
the x,y,z-system, [ ], the expressions in the x,y,q-system, ( ) 
as follows 

[ ] , z = H-1( ) , q (A. 14) 

[ ) 'X = ( ) ,x H-1(h X + qH, xl ( ) , q (A. 15) , 

[ ] , y = ( ) , y - H-1 (h + ,y qH,y) ( ) , q (A. 16) 

[ ] , t = ( ) , t - H-1 (1 + q)h,t( ) , q (A.17) 

Note that only the positions of the variables is transformed; the 
directions of u and v are unchanged. The momentum equations in 
the x,y,q-system are 

and 

(Hu),t + Bx-1 (HBxuu),x + (Huv),y + H-1(uw),q 

= -gh,x- a 0 pa,x- Gx + fv + Bx-1 (2HBxAhu,xl,x 

+ (AhH[v,x + u,yJl,y + H-2 (Avu,q),q- kHBx-1uJuJ 

(Hv),t + (Hvu),x + By-1(HByvv),y + H-1(vW),q 

= -gh,y- a 0 Pa,y- Gy- fu + (AhH[u,y + v,xJl,x 

+ By-1(2HByAhv,y),y + H-2(Avv,q),q- kHBy-1vJvl 

where 

w = Hdq/dt = w - (1 + q)h,t - u(h,x + qH,x) 

- v(h,y + qH,y) 
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and 
0 

Gx = g[H!(P 
q 

0 

g[H! (p 
q 

- Po)dq] x + g(h x + qH xl <P - Pol , , , (A.21) 

- Po)dqJ,y + g(h,y + qH,yl (p- Pol (A.22) 

The hydrostatic approximation to the vertical momentum equation 
is now 

P,q = - pgH (A. 23) 

Continuity, or mass conservation, in the absence of sound waves 
is 

h,t + Bx-1 (HBxu>,x +By-l(HByv),y + Hw,q = o 

Conservation of salt is 

(A. 24) 

(HS),t + Bx-1 (BxH[uS- ~S,xJl,x + By-l(ByH[vS- DhS,yJl,y 

+ (wS- H-lnys,q),q = 0 (A.25) 

The thermodynamic conservation equation is 

(HT),t + Bx-1 (BxH[uT- DhT,xJl,x + By-1 (ByH[vT- DhT,yJ),y 

+ (WT- H-1DyT,q),q = HR (A.26) 

4. The External Mode Velocity and Mass Equations 

The external, or barotropic, mode of the horizontal velocity is 
identified here as the integrated value of the flow over the 
total depth. If we define the vertically-integrated velocities 
as 

0 

y = !udq 
-1 

and 
0 

v = !vdq 
-1 

then the vertically-integrated (external mode) form of the 
velocity equations is 

(A.27) 

(HY.),t + Bx-1 (HBxH9uuuu),x + (H9uvuv),y = -gHh,x- a 0 HPa,x 

- G*x + fy + Bx-1 (2AhHBxY,xl,x + (AhH[Y,x + Y.,yJ),y 

(A. 28) 
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and 

(HY),t + (H9uvuv),x + By-1 (HBy9vvvv),y = -gHh,y- QQHPa,y 

- G*y- fy + By-1 (2AhHByY,y),y + (AhH[Y,x + Y,yJl,x 

and the external-mode continuity equation is 

h,t + Bx-1 (BxHY),x + By-1 (ByHY),y = 0 

where 

and 

and 

0 0 

(A.29) 

(A. 3 0) 

(A.31) 

0 

9uu = I (uujuu) dq, 
-1 

9uv = Icuvjuv)dq, 
-1 

9vv = ICvvfvv)dq 
-1 

0 

9su = I (ufy) lcufy) I dq 
-1 

0 

9sv = I (vjy) I (vjy) I dq 
-1 

5. The Internal Mode Velocity Equations 

We can define the internal mode velocities as 

u' = u - y and v' = v - y 

velocity equations by 

(A.32) 

(A.33) 

(A. 34) 

and then derive the internal mode 
subtracting the equations for the 
equations for the total velocity. 
velocity equations 

external mode velocity from the 
This qives the internal-mode 

(Hu'),t + Bx-1 (BxH[uu- 9uuUU]),x + (H[uv- 9uvuv]),y 

+ (Wu'),q = G*x- Gx + fv' + Bx-1 (2AhHBxu' ,xl,x 

+ (AhH[v',x + u',yJl,y + H-1 (Avu',ql,q- Tsx + Tbx 

- CwsHBx-1 Culul - 9suYIYI> 
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and 

(Hv'),t + (H[uv- 9uvuv]),x + By-1 (ByH[vv- 9vvVVll,y 

- ) * + (wv' ,q = G y- Gy- fu' + (AhH[v',x + u',yl)rx 

+ By-1(2AhHByv',yl,y + H-l(Avv',ql,q- T5 y + Tby 

- Cw5 HBy-1 (vlvl- 9 5 vYIYil 

The internal-mode continuity equation is 
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APPENDIX B. Water Surface Heat Flux Terms. 

Following Parkinson and Washington (l979), we write the total 
heat downward flux at the air-water interface as 

(B. l) 

where Ql is solar shortwave component which penetrates the water 
column below the surface, and Q? is the flux that is absorbed 
right at the surface in the "skl.n layer" (approximately the top 
millimeter). These components are treated separately. 

l. The Solar Shortwave Component 

The solar shortwave component is defined as 

Ql = Qss(l - A)fc(n) (B.2) 

where Qss is the flux at the sea surface under cloudless 
conditions, A is the albedo of the sea surface, fc is a 
cloudiness function, and n is the fraction of sky covered by 
clouds. Here 

Qss = Sccos2 (Z)/[O.l0 + l.085cos(Z) 

+ l0-5{cos(Z) + 2.7}ea] (B. 3) 

where Sc is the solar constant (l353 w;m2), ea the atmospheric 
vapor pressure at the surface, and Z the solar zenith angle 
defined by 

and 

cos(Z) = sin(~)sin(D) + cos(~)cos(D)cos(Hal 

~ = geographic latitude, 

D =declination = 23.44°cos([l72 - day in year]~/l80) 

Ha = hour angle = (l2 - solar hour)~/l2 

(B. 4) 

(B. 5) 

(B. 6) 

(B. 7) 

The solar hour is the hour of the day measured from midnight. 
The vapor pressure is found by 

= 6ll X l0(7.5[T - 273.l6]/[T - 35.86]) (B. 8) 

where Tis the atmospheric boundary layer temperature (K). 

The cloudiness function used here is 

fc(n) = l - n (B. 9) 
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2. The Flux at the Skin Layer 

The surface flux skin layer is the sum of several terms 

(B.10) 

where QL is the longwave radiation from the atmosphere to the 
sea, QB is the negative of the black body radiation from the 
water surface, Qe the net downward evaporative, or latent, heat 
flux, and Qs is the net downward sensible heat flux. Taking the 
terms one at a time, we have 

(B.11) 

where c~b is the Stefan-Boltzman constant (5.670 x lo-8 w;m2/K4) 
and Ta 1s the representative atmospheric temperature (K). 

The downward black body radiation from the sea is 

(B.12) 

where 0.97 is the surface emissivity and Tw is the temperature at 
the sea surface. 

The net downward evaporative heat flux is 

(B.12) 

where Pais air density, Ce the transfer coefficient (0.00175), 
Vlo the wind speed at 10 meters, qa the specific humidity of the 
a1r at 10 meters, qs the specific humidity at the surface (where 
saturation is assumed), and Lv is the latent heat of vaporization 
(2.5 x 106 Jjkg). Specific humidity is defined as 

q = 0.622ej[p - (1 - 0.622)e] (B.13) 

and relative humidity as 

(B.14) 

where 0.622 is the ratio of the molecular weights of dry air and 
water vapor. 

The sensible heat flux is approximated by the bulk formula 

(B.15) 

where Cp is the heat capacity of dry air (1004 Jjkg/K), and Cf 
the transfer coefficient (0.00175). 
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